突围算法:机器学习算法应用
刘凡平
内容简介
本书主要对算法的原理进行了介绍,并融合大量的应用案例,详细介绍使用机器学习模型的一般方法,帮助读者理解算法原理,学会模型设计。
本书首先介绍数据理解、数据的处理与特征,帮助读者认识数据;然后从宏观、系统的角度介绍机器学习算法分类、一般学习规则及机器学习的基础应用;接着根据项目研发的流程,详细介绍了模型选择和结构设计、目标函数设计、模型训练过程设计、模型效果的评估与验证、计算性能与模型加速;最后通过多个应用案例帮助读者加强对前面知识点的理解。 前言
写作背景
我多年前参加了“百度深度学习公开课·杭州站”的活动,当时做了一个主题为“深度学习模型设计经验分享”的演讲,现场效果非常好,后来萌发了写机器学习算法的想法。于是我将一些工作内容进行沉淀总结,便形成了本书。
本书内容
本书主要对算法的原理进行了介绍,并融合大量的应用案例,详细介绍使用机器学习模型的一般方法,帮助读者理解算法原理,学会模型设计。
本书首先介绍数据理解、数据的处理与特征,帮助读者认识数据;然后从宏观、系统的角度介绍机器学习算法分类、一般学习规则及机器学习的基础应用;接着根据项目研发的流程,详细介绍了模型选择和结构设计、目标函数设计、模型训练过程设计、模型效果的评估与验证、计算性能与模型加速;最后通过多个应用案例帮助读者加强对前面知识点的理解。
读者对象
● 对数据分析、算法及机器学习领域感兴趣的开发者;
● 对人工智能产品、算法方案设计有不同层次需求的技术管理者;
● 软件工程或计算机相关专业的在校学生。
本书特色
本书紧密结合一线开发者的项目应用经验,对当前机器学习的各类算法原理进行了介绍,以方法论的形式连接原理和实践,指导读者设计机器学习模型。
本书结构
本书内容由浅入深,以宏观认识为基础,逐步深入算法体系、算法细节,全书共分为10章,具体内容如下。
第1章从宏观的角度介绍人工智能相关基础知识…