深度学习原理与PyTorch实战
张伟振
作者简介
张伟振
主要从事系统架构设计、深度学习在计算机视觉任务中的应用方面的研究,在计算机图形学、大型软件架构设计、后台开发、桌面应用、游戏、Web应用等领域亦有较丰富经验。 内容简介
本书按照从理论到实践,从实践到创造的顺序讲解深度学习领域的知识与技术,代码翔实,公式简单易懂。
本书第1章介绍深度学习的概念和目前的形势,第2章介绍Python编程语言基础,第3章使用Python语言计算极限、导数、级数等数学问题,第4章讲解深度学习的基本原理与PyTorch框架的基本使用,第5章和第6章详细讲述经典网络结构CNN和RCNN,第7~9章介绍自研深度学习框架,并详细讨论之前忽略的深度学习底层实现上的算法和细节,第10章介绍目前机器学习的前沿——无监督学习,第11章主要讲解深度学习模型以Web应用形式部署的技术。
本书适合有高等数学基础、希望了解深度学习领域知识和技术的初学者阅读,也可作为相关培训机构的参考用书。 前言 PREFACE
深度学习及神经网络算法涵盖较广的计算机和数学领域,如果使用PyTorch、TensorFlow等深度框架,并记住它们的使用规则,可能能够应付大部分的情况并绕过许多细节,但知其然而不知其所以然,显然只是学习深度学习的第一步,通用的深度学习框架并不总是能满足所有的需求,如果要从使用到扩展乃至创造,就需要掌握远比简单使用更多的知识和细节。
得益于PyTorch、TensorFlow等深度学习框架都是开源的,有些时候通过发掘它们的源码来进阶相对简单,例如我想知道PyTorch是如何实现Adam的,可以将光标移到torch.optim.Adam类名上,使用快捷键Ctrl+B或Ctrl+鼠标跳转到声明,便可以发现它调用了torch.optim.functional.adam函数,同样进入torch.optim.functional.adam,在这里…