知识图谱导论

陈华钧
内容简介 知识图谱的发展历史源远流长,从经典人工智能的核心命题——知识工程,到互联网时代的语义Web,再到当下很多领域构建的数千亿级别的现代知识图谱。知识图谱兼具人工智能、大数据和互联网的多重技术基因,是知识表示、表示学习、自然语言处理、图数据库和图计算等多个领域技术的综合集成。本书全面覆盖了知识图谱的表示、存储、获取、推理、融合、问答和分析等七大方面,一百多个基础知识点的内容,同时囊括多模态知识图谱、知识图谱与图神经网络的融合、本体表示学习、事理知识图谱,以及知识增强的语言预训练模型等新热点、新发展。作为一本导论性质的书,本书希望帮助初学者梳理知识图谱的基本知识点和关键技术要素,也希望帮助技术决策者建立知识图谱的整体视图和系统工程观,为前沿科研人员拓展创新视野和研究方向。 本书在技术广度和深度上兼具极强的参考性,适合高等院校的计算机专业师生阅读,也可供计算机相关行业的管理者和研发人员参考。 推荐序 知识图谱向何处去? 陆汝钤 很高兴得知陈华钧教授要出知识图谱的新书了。与2019年出版的《知识图谱:方法、实践与应用》相比,本书在内容上有很多更新,尤其是第8、第9两章中的新内容最为集中。这些内容反映了近年来知识图谱理论和技术的迅速进步,同时展现了作者团队的辛勤工作所取得的丰硕成果。我初步翻阅本书,就觉得很有收获。这里就其中的两个话题—知识图谱推理和知识图谱融合,谈一点个人想法。 知识图谱的推理是知识图谱服务功能中一个极其重要的问题。基于知识图谱的许多重要问题的解决都离不开推理。陈华钧教授曾经一语中的:知识获取的途径是“大样本靠机器学习,小样本靠知识推理”。这是知识图谱显身手的主战场。本书的“知识图谱推理”一章介绍了基于知识图谱的多种推理方式,包括基于规则的、基于本体的、基于图结构的、基于表示学习的、基于神经网络的,等等,这是非常有道理的。知识本身的多种多样,加上人的思维…