Python科学与工程数据分析实战
李晓东
内容简介
本书以Python 3.10.7为平台,以实际应用为背景,通过概述+算法+经典应用的形式,深入浅出地介绍Python数据分析的相关知识。全书共9章,主要内容包括Python概述、科学计算库、开源科学集、数据分析利器、数据分析的可视化、基于回归的数据分析、基于分类的数据分析、基于聚类的数据分析、数据特征分析等。通过学习本书,读者可领略到Python的简单、易学、易读、易维护等特点,同时也可感受到利用Python实现数据分析应用领域广泛,功能强大。
本书可作为高等学校相关专业本科生和研究生的教学用书,也可作为相关专业科研人员、学者、工程技术人员的参考用书。 前言
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息形成结论,从而对数据加以详细研究和概括总结的过程。
在实际应用中,数据分析可帮助人们作出判断,以便采取适当行动。数据分析是有目的地收集数据、分析数据,使之成为信息的过程。
数据分析有极广泛的应用范围,典型的数据分析可能包含以下三步:
(1)探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合、计算某些特征量等手段探索规律性的可能形式。
(2)模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。
(3)推断分析,通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。
数据分析过程的主要活动由识别信息需求、收集数据、分析数据、评价并改进数据分析的有效性组成。
本书为什么会在众多语言当中选择Python来实现数据分析呢?其主要原因之一是:Python是一种效率极高的语言;相比众多其他语言,Python具有简单、易学、易读、易维护等特点。
另一个原因是:对程序员来说,社区是非常重要的,大多数程序员都需要向解决过类似问题的人寻求建议,在需要有…